ΗΙΟΚΙ

Two-arm model

1116 X-Y C HITESTER

Max.100 steps/s ultra-highspeed inspection

The **1116** X-Y C HITESTER is a high-speed substrate tester that uses capacitance measurement to greatly reduce the number of testing steps and time required for testing compared to testers that use continuity testing. The new **1116** can test at speeds as great as 0.010 s/step, and can detect extremely small changes at a high resolution of 5aF during capacitance measurement. The **1116** X-Y C HITESTER is a non-fixture testing apparatus which not only yields very low running costs, but also has a high-speed soft landing function that minimizes impressions resulting from probe impact. Because there are no restrictions on board type, it can be used for testing plastic, ceramic, and liquid crystal glass panels.

From ordinary bare boards to high-density

BGA, CSP, or MCM packages

1

Accommodates flexible boards too

Maximum measurement speed of 0.014 s/step

The **1116 X-Y C HITESTER** can test at speeds as great as 0.014 s/step.

(with 0.1 mm movement and all two arms used simultaneously during capacitance measurement)

Capacitance measurement resolution of 5aF(1aF=10⁻⁶pF)

Since the variation in capacitance accompanying a fault may be extremely small, high resolution is required for capacitance measurement. With a high resolution of 5aF, the **1116 X-Y C HITESTER** can detect extremely small variations.

High-precision probing

With a minimum pad diameter of just ± 20 mm, the 1116's high-precision design assures accurate probing of fine pitch pattern pads.

Large testing area

The **1116 X-Y C HITESTER** has a testing area of up to 610 (W) \times 510 (D) mm, allowing the testing of large boards.

Vacuum clamping

The board being tested are fixed using the vacuum clamping method. Since chucks are not required to secure the board during carrying and testing, all areas on the board can be tested.

Accommodates boards as thin as 0.1 mm

Boards with thicknesses ranging from 0.1 mm to 3.2 mm can be tested, making it possible to test thin boards, such as flexible circuit boards.

A standard automatic positioning correction function

Together with a high-precision mechanism, the automatic positioning correction function assures an additional degree of probing accuracy.

Two keyboard heights

The keyboard can be placed at two heights to accommodate both standing and sitting working postures.

Minimal probing impact

Probing impact is kept to a minimum with the high-speed soft landing function and shock-absorbing probes.

High-speed soft landing function

The probes are raised while they are being moved, and are only lowered for testing. To soften the impact, the speed of descent is lessened as the probe approaches the target.

A variety of electrical measurements

In addition to capacitance measurement, the **1116 X-Y C HITESTER** can also measure resistance, inductance, diode VF, and voltage.

Loading system is standard outfit (1116-72,1116-74,1116-75)

A single axis actuator is used to move the vacuum clamping jig. Boards to be tested can easily be set from outside the main unit.

The 1116-75 uses dual testing tables, with a transport system on both the left and right sides.

(The size of the 1116-75 tables is 280(W)×510(D)mm each.)

1116-72,74

1116-75

1116-72,74 Loading system

High-speed pattern testing using capacitance measurement

Each printed circuit pattern has a particular capacitance, proportional to its area, with respect to the electrically insulated electrode used for testing. If there are circuit breaks, or shorts, then the area of the pattern will differ, and the capacitance will change correspondingly. Therefore, by comparing the capacitance values with those of a reference board, the pattern can be checked for continuity. Since the floating capacitance of the pattern is extremely low, a special-purpose jig with vacuum clamping is used to obtain stable measurement values.

Testing steps

Using the conductivity measurement method to check pattern A in the figure for continuity requires three steps, measuring 1-2, 1-3, and 1-4, and the same is required for patterns B and C. Checking for short circuits in A, B, and C requires another three steps, testing A-B, A-C, and B-C. Thus, if the circuit is complex, the number of steps is very large. Using the capacitance measurement method, discontinuity and short circuit testing can be achieved by measuring at just the endpoints of each pattern.

Comparison of testing steps For 100 networks with all 500 nodes

	Conductivity measurement method	Capacitance measurement method
Discontinuity testing	All nodes in the same network 500 - 100 = 400	Discontinuity and short circuit testing for capacitance
Short circuit testing	$nCr = 100C_2$ 100 ×(100-1)/2 = 4950	measurements of all nodes. 500
Testing steps	5350	500

Convenient features

When there is no circuit break, Cx = Cx1 + Cx2When there is a circuit break, Cx = Cx1In the case of a circuit break, the capacitance is detected as being lower than that of a reference board; if there is a short circuit, it will be detected as higher.

As shown in the figure below, if there is a discontinuity near one end of the pattern, then there is very little change in the capacitance measured from a, but a large change measured from b.

Testing data with FLY LINE

FLY LINE searches for network information and end point coordinates from various types of garber and NC data, and automatically extracts the testing points required to conduct pattern tests for printed substrates. **FLY LINE** produces test data with great efficiency.

1116 Specifications

No. of arms	2		Thickness : 0.1 to 3.2 mm
No. of probes	2		External dimensions : 50×50mm to 610×510mm
No. of test steps	Max. 40,000 (300,000 for continuous testing)		(Note:1116-75 External dimensions : 50×50mm to 280×510mm)
	DC measurement function	Fixed and movable boards	Component mounting limits :
Test ranges	Resistance :400 $\mu\Omega$ to 40M Ω		Upper surface ; 12 mm(including board thickness)
	Capacitance :4 μ F to 400mF		Lower surface ; not possible
	Diodes, transistors (VF) : 0 to 25V		Board weight : 2.0 kg max.
	Zener diodes (VZ) : 0 to 25V	Board-carrier	Vacuum jig horizontal carrier with a single axis actuator
	Short circuit :400m Ω to 40k Ω	Positioning correction	Automatic positioning correction function
	Open circuit :4 Ω to 4M Ω		Emergency stop switch, safety cover (of anti-static resin),
	Voltage : 0 to 25V	Safety devices	interference prevention (stops arms from colliding)
	AC measurement function	External memory	FDD, HDD, CD-ROM
	Resistance : 100Ω to $100M\Omega$	Display	17-inch color display
	Capacitance :10 fF to 10μ F	D	200 V AC±10%(single phase) 50/60Hz
	Coils :10µH to 100H	Power supply	Power consumption :3kVA
Measurement signal	DC constant voltage : 100mV/400mV(2 ranges)	Pneumatic	Primary pressure: 0.5 to 0.99 MPa (dry air)
	DC constant current :200nA to 200mA(13 ranges)	system	
	AC constant voltage : 1V rms/10 V peak (2 ranges)	Air consumption	Max.0.3Nl/min.
	AC frequency :160Hz/1.6kHz/16kHz/160kHz		Temperature : 23±10 °C
	DC voltage measurement : $800 \mu V$ to $25 V fs.(8 ranges)$	Operating environment	Humidity : 75%rh or less(no condensation)
Measurement	DC current measurement : 100nA to 25mAf.s.(7 ranges)		Atmosphere : Avoid use subject to dust, vibration,
ranges	AC current measurement : 10μ A to 10mArms.(4 ranges) for 1 Vrms		or corrosive gases
	: 100μ A/1mA (2 ranges) for 10 Vpeak		Floor strength: at least 500 kg/m ²
Decision range setting	-99.9% to +999.9% or absolute value		Thermal mini printer, printer cable, grease, grease can,
Measurement time	Min. 0.010 s/step (0.1 mm movement with 2-arm simultaneous probing		arm offset board, keyboard, PS/2 mouse, mouse pad,
	during capacitance measurement)	Accessories	mouse pocket, PC accessories, Setup disk, leveling jacks
Minimum pad diameter			(4), color display (17 inch), power cord (loose ends, 3 m),
Minimum movement step	XY : 1.00μ m/pulse Z : 6.00μ m/pulse		spare fuse, impression sheets
Minimum Probing pitch	50 µm	Unit dimensions	1116-71,73 1465 (W) ×1230 (H)× 1110 (D) mm approx.
	Using a link-type probe.		1116-72,74 2075 (W) ×1230 (H)× 1110 (D) mm approx.
	Proper operation is subject to certain conditions.		1116-75 2245 (W) ×1230 (H)× 1240 (D) mm approx.
Probe work area	610(W)×510(D)mm	Mass	1000 kg approx.

*Air is required when using the stamp unit.

1116 X-Y C HITESTER

The 1116 does not include a printer. please consult with Hioki regarding availability of English printers.

Factory options

1355-01 VACUUM PUMP (AC200 V, three phase)	
1933-20 INSULATION MEASUREMENT UNIT	
1941-31 STAMP UNIT for B ABM	
1941-32 STAMP UNIT for L ARM	
1941-35 STAMP UNIT WITH THE CAP for L ARM	
1945-21 COAXIAL DOWNWARD ILLUMINATION UNIT for R ARM	
1945-22 COAXIAL DOWNWARD ILLUMINATION UNIT for L ARM	
1946-04 MONITOR CAMERA	
1947-23 1.2 POWER LENS UNIT for R ARM	
1947-24 1.2 POWER LENS UNIT for L ARM	
Options	
1139-03 1116-7x DATA COMPOSITION SOFTWARE	
1139-53 FL-Link4 FLY-LINE LINK SOFTWARE	

- 1330-01 MEASUREMENT SECTION CALIBRATION UNIT
- MAINTENANCE TOOL SET 1356
- 1172-66 LINK PROBE (for L and R ARM)
- 1172-67 DOUBLE LINK PROBE (for L and R ARM)
- 1172-68 LINK PROBE WITH BLADE (for L and R ARM)
- 1172-69 DOUBLE LINK PROBE WITH BLADE (for L and R ARM)
- 1172-70 SHOCK-ABSORBING SINGLE NEEDLE PROBE (SK)
- 1172-71 SHOCK-ABSORBING SINGLE NEEDLE PROBE (WC)
- 1172-72 SHOCK-ABSORBING TRIANGULAR PYRAMID PROBE (SK) 1172-74 PROBE FOR CALIBRATION (for L and R ARM)
- 1172-75 SHOCK-ABSORBING SINGLE NEEDLE PROBE (HP)

HIOKI E. E. CORPORATION

HEAD OFFICE :

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 / FAX +81-268-28-0568 E-mail: os-com@hioki.co.jp

HIOKI USA CORPORATION :

6 Corporate Drive, Cranbury, NJ 08512 USA TEL +1-609-409-9109 / FAX +1-609-409-9108 E-mail: hioki@hiokiusa.com

TKK HIOKI CO.,LTD : NO.66-8,Sec.2,Nan Kan Road,Lu-chu, Taoyuan,Taiwan TEL +886-3-311-7260 / FAX +886-3-311-8236

HIKING TECHNOLOGY CO., LTD : 81, Su Hong Xi Road, Suzhou Industrial Park, Suzhou, P.R. CHINA

TEL+86-512-62560393 / FAX+86-512-62560390

HIOKI E.E.CORPORATION Singapore Representative Office : 12 New Industrial Road,#02-04 Thoren Technocentre,Singapore 536202 TEL +65-6288-0050 / FAX +65-6282-2283 E-mail: info@hioki.per.sg

1172-76 SHOCK-ABSORBING SINGLE NEEDLE PROBE (HP SR10) 1172-77 SHOCK-ABSORBING SINGLE NEEDLE PROBE (WC SR10)

- 1172-80 PROBE (Flat spring,3mm stroke) 1172-81 LINK PROBF (Link, high-speed version)
- 1172-82 LINK PROBF (Link, high-speed version)
- 1172-83 DOUBLE LINK PROBE (Double link, 35µm between terminals)
- 1134-02 IMPRESSION SHEETS
- 1164-02 ONE-WAY CLUTCH
- 1164-03 PROBE ATTACHMENT
- **RECORDING PAPER (25m, 10rolls)** 1196
- OFFSET BOARD (t=2mm) 1350
- 1350-01 OFFSET BOARD (t=1mm)

SOLUTIONS, INC. Tel: (406)733-6700 www.hdl-coom

All information correct as of Jun.22, 2004. All specifications are subject to change without notice